2023年双十一大促活动来袭!超多惊喜!点击参与~
生物医药全球启航,百普赛斯ACROBiosystems邀您同行~
2023年双十一大促活动来袭!超多惊喜!点击参与~
生物医药全球启航,百普赛斯ACROBiosystems邀您同行~
SARS-CoV-2突变株相关产品更新发布!
最新突变株: BA.2.86、EG.5、XBB.1.16、XBB.2.3、BA.2.75、XBB.1.5、 XBB、 BQ.1、 BN.1、 CH.1.1
针对全球新冠病毒主要及最新突变株,ACROBiosystems已开发生产出一系列优质试剂产品,包括突变抗原、突变特异性抗体、结合/中和抗体、ELISA试剂盒、突变Spike蛋白假病毒及预偶联蛋白磁珠产品,为各领域研发人员提供应对新冠病毒突变的全面解决方案。
WHO Label | Pango Lineage | Earliest documented samples | Transmissibility | Immune Evasiveness | Vaccine Effectiveness |
---|---|---|---|---|---|
Alpha | B.1.1.7 | United Kingdom | + + + | — — | √ |
Beta | B.1.351 | South Africa | + | + + + + | √ |
Gamma | P.1 | Brazil | + + | + + | √ |
Delta | B.1.617.2 | India | + + + + | + + | √ |
Lambda | C.37 | Peru | + + + + | + + | √ |
Omicron | EG.5 | Indonesia | + + + + (?) | + + + + (?) | ? |
特色产品: 多位点突变胞外全长Spike蛋白三聚体
热门产品一:多种突变株中和抗体检测试剂盒
突变株种类 | 产品 |
---|---|
SARS-CoV-2南非突变株Omicron | B.1.1.529 | RAS-N056 |
SARS-CoV-2英国突变株 Alpha | B.1.1.7 | RAS-N028 |
SARS-CoV-2南非突变株Beta | B.1.351 | RAS-N031 |
SARS-CoV-2巴西突变株Gamma | P.1 | RAS-N034 |
SARS-CoV-2 印度突变株Delta | B.1.617.2 | RAS-N040 , RAS-N041 |
突变位点: | G339H, R346T, L368I, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, V445P, G446S, F456L, N460K, S477N, T478K, E484A, F486P, F490S, Q498R, N501Y, Y505H |
标签: | His Tag |
抗原表位: | S Trimer ,RBD |
相关产品: |
突变位点: | I332V,G339H,K356T,S371F,S373P,S375F,T376A,R403K,D405N,R408S,K417N,N440K,V445H,G446S,N450D,L452W,N460K,S477N,T478K,N481K,E484K,F486P,Q498R,N501Y,Y505H |
标签: | His Tag |
抗原表位: | S Trimer ,RBD |
相关产品: |
突变位点: | A67V, HV69-70del, T95I, G142D, VYY143-145del, N211del, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F |
标签: | His Tag;His Tag & Avi Tag |
抗原表位: | S Trimer, RBD, S1, NTD, N protein |
相关产品: |
突变位点: | L452R, F490S, G75V, T76I, SYLTPGD 247-253 del, L452Q, D614G, T859N |
标签: | His Tag;His Tag & Avi Tag |
抗原表位: | Spike protein, Spike RBD |
相关产品: |
突变位点: | S蛋白突变:T19R, G142D, EF156-157del, R158G, L452R, T478K, D614G, P681R, D950N; |
标签: | His Tag;His Tag & Avi Tag |
抗原表位: | Spike protein, Spike S1, Spike RBD, Spike NTD, Nucleocapsid protein |
相关产品: |
突变位点: | S蛋白突变:HV69-70del, Y144del, N501Y, A570D, D614G, P681H, T716I, S982A, D1118H; |
标签: | His Tag;His Tag & Avi Tag;Fc tag |
抗原表位: | Spike protein, Spike S1, Spike RBD, Spike NTD, Spike S2, Nucleocapsid protein etc. |
相关产品: |
突变位点: | S蛋白突变:L18F, D80A, D215G, 242-244del, R246I, K417N, E484K, N501Y, D614G, A701V; |
标签: | His Tag;His Tag & Avi Tag;Fc tag;mFc tag |
抗原表位: | Spike protein, Spike S1, Spike RBD, Spike NTD, Spike S2, Nucleocapsid protein |
相关产品: |
突变位点: | S蛋白突变:L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I, V1176F; |
标签: | His Tag;His Tag & Avi Tag;Fc tag;mFc tag |
抗原表位: | Spike protein, Spike S1, Spike RBD, Spike NTD, Spike S2, Nucleocapsid protein |
相关产品: |
流行突变株: | |
流行突变株: | |
流行突变株: | |
流行突变株: | |
流行突变株: | |
流行突变株: | |
流行突变株: | |
流行突变株: | |
流行突变株: |
<<<?如果您希望ACRO开发更多类型的新冠病毒突变产品,请点击提议
<<< ?点击查看所有新冠相关产品
经SPR验证,ACE2与Alpha/Beta/Gamma突变株的结合亲和力与野生型RBD比较,均相差一个数量级,KD值均为nM水平。表明RBD突变体和ACE2的结合亲和力增强,可能是导致Alpha, Beta, Gamma突变株感染力增加的原因。
图1. SPR方法检测ACE2 (Cat. No. AC2-H52H8)分别与WT RBD (Cat.No. SPD-C52H3) (KD=1.03E-08M) (左上)、Alpha突变株RBD(Cat.No. SPD-C52Hn)(KD=1.24E-09M)(右上)、Beta突变株RBD(Cat.No. SPD-C52Hp)(KD=3.27E-09 M)(左下)、Gamma突变株RBD(Cat.No. SPD-C52Hr)( KD=2.23E-09M)(右下)的亲和力比较
Protocol
经检测,接种灭活疫苗的血清样本对Wild type和B.1.1.7变异株的中和能力接近,但对B.1.351和P.1毒株的中和能力明显下降。
图 2. 新冠病毒(突变株)中和抗体滴度检测试剂盒检测56份接种灭活疫苗后的血清样本中的中和抗体滴度。血清样本中的中和抗体对野生型和B.1.1.7突变株的中和能力接近,但对B.1.351和P.1突变株的中和能力明显下降。(图中产品分别对应WT-RBD(Cat. No. RAS-N022),B.1.1.7 RBD(Cat. No. RAS-N028),B.1.351 RBD(Cat. No. RAS-N031),P.1 RBD(Cat. No. RAS-N034)
Protocol
经假病毒实验体系验证,广谱型中和抗体(Cat.No. S1N-M122) 可以有效中和野生型及Alpha/Beta/Gamma/Delta突变株病毒,适合作为质控品,应用于针对突变株的中和抗体筛选、重组蛋白疫苗研发、疫苗接种后血清中的中和抗体检测等。
图3. 新冠广谱中和抗体(Cat.No. S1N-M122)对野生型和各种突变Spike RBD的中和活性
Protocol
使用抑制剂筛选试剂盒(Cat.No. EP-107)经抗体筛选实验,获得多株具有中和能力的抗体候选物,且经P3实验室验证可以有效中和新冠病毒对Vero细胞的感染。表明SARS-CoV-2抑制剂筛选试剂盒和新冠病毒中和实验两者之间具有很好的相关性,有助于快速地筛选和验证药物,提高药物开发效率。
图4. 使用新型冠状病毒 (WT) 抑制剂筛选试剂盒(新冠RBD蛋白)(Cat.No. EP-107)筛选抗病毒药物。
Protocol
经验证,偶联突变体的磁珠具有稳定性好、低非特异性结合、便捷高效的特点,能够节约实验的时间成本,提升抗体筛选效率。
图5. 预偶联新冠B.1.1.7突变株Spike Trimer的磁珠(Cat.No. MBS-K029)和Anti-SARS-CoV-2 S1抗体的结合曲线表明,该磁珠可以很好地捕获抗体。预偶联蛋白载量>24 μg/mg磁珠,捕获抗体载量>23 μg/mg磁珠。
Protocol
Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants
Wang K, Jia Z, Bao L, et al.
doi:https://doi.org/10.1038/s41586-022-04466-x
Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron
Zhen Cui, Pan Liu, Nan Wang, et al.
doi:https://doi.org/10.1016/j.cell.2022.01.019
Classical and Next-Generation Vaccine Platforms to SARS-CoV-2: Biotechnological Strategies and Genomic Variants
Rachel Siqueira de Queiroz Sim?es and David Rodríguez-Lázaro
doi:https://doi.org/10.3390/ijerph19042392
The BNT162b2 mRNA SARS-CoV-2 vaccine induces transient afucosylated IgG1 in naive but not antigen-experienced vaccinees
J Van Coillie, T Pongracz, J Rahmoeller, HJ Chen, et.al.
doi: https://doi.org/10.1101/2022.02.14.480353
Anti-SARS-CoV-2 Omicron Antibodies Isolated from a SARS-CoV-2 Delta Semi-Immune Phage Display Library
I Mendoza-Salazar, KM Gómez-Castellano, et.al.
doi:https://doi.org/10.3390/antib11010013
First identification of SARS-CoV-2 Lambda (C.37) variant in Southern Brazil
Priscila Lamb Wink PhD, Fabiana Caroline Zempulski Volpato MSc, Francielle Liz Monteiro PhD, et.al
doi:https://doi.org/10.1101/2021.06.21.21259241
Infectivity and immune escape of the new SARS-CoV-2 variant of interest Lambda
Mónica L. Acevedo, Luis Alonso-Palomares, Andrés Bustamante, et.al
doi:https://doi.org/10.1101/2021.06.28.21259673
SARS-CoV-2 Lambda variant exhibits higher infectivity and immune resistance
Izumi Kimura, Yusuke Kosugi, Jiaqi Wu, et.al
doi:https://doi.org/10.1101/2021.07.28.454085
SARS-CoV-2 Lambda Variant Remains Susceptible to Neutralization by mRNA Vaccine-elicited Antibodies and Convalescent Serum
Takuya Tada, Hao Zhou, Belinda M. Dcosta, et.al
doi:https://doi.org/10.1101/2021.07.02.450959
Surveillance of SARS-CoV-2 variants in Argentina: detection of Alpha, Gamma, Lambda, Epsilon and Zeta in locally transmitted and imported cases
Torres Carolina, Mojsiejczuk Laura, Acu?a Dolores, et.al
doi:https://doi.org/10.1101/2021.07.19.21260779
THE EMERGENCE OF SARS-COV-2 VARIANT LAMBDA (C.37) IN SOUTH AMERICA
Pedro E. Romeroa, Alejandra Dávila-Barclay, Guillermo Salvatierra, et.al
doi:https://doi.org/10.1101/2021.06.26.21259487
Rapid displacement of SARS-CoV-2 variant B.1.1.7 by B.1.617.2 and P.1 in the United States
Alexandre Bolze, Elizabeth T. Cirulli, Shishi Luo, et.al
doi: https://doi.org/10.1101/2021.06.20.21259195
Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum
Chang Liu, Helen M. Ginn, Wanwisa Dejnirattisai, Piyada Supasa, Beibei Wang, et.al
doi: https://doi.org/10.1016/j.cell.2021.06.020
SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination
Markus Hoffmann, Heike Hofmann-Winkler, Nadine Krüger, et.al
doi: https://doi.org/10.1101/2021.05.04.442663
SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination
Markus Hoffmann, Heike Hofmann-Winkler, Nadine Krüger, et.al
doi: https://doi.org/10.1101/2021.05.04.442663
Possible link between higher transmissibility of B.1.617 and B.1.1.7 variants of SARS-CoV-2 and increased structural stability of its spike protein and hACE2 affinity
Vipul Kumar1, Jasdeep Singh, Seyed E. Hasnain, Durai Sundar
doi: https://doi.org/10.1101/2021.04.29.441933
Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees
Pragya D. Yadav, Gajanan N. Sapkal, Priya Abraham, M.D
doi: https://doi.org/10.1101/2021.04.23.441101
Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India
Sarah Cherian, Varsha Potdar, Santosh Jadhav, et al.
doi: https://doi.org/10.1101/2021.04.22.440932
Bioinformatics analysis of SARS-CoV-2 RBD mutant variants and insights into antibody and ACE2 receptor binding
Prashant Ranjan, Neha, Chandra Devi1and Parimal Das
doi: https://doi.org/10.1101/2021.04.03.438113
Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7
Pengfei Wang, Manoj S. Nair, Lihong Liu et al
doi: https://doi.org/10.1101/2021.01.25.428137
SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma
Constantinos Kurt Wibmer, Frances Ayres, Tandile Hermanus et al
doi: https://doi.org/10.1101/2021.01.18.427166
Comprehensive mapping of mutations to the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human serum antibodies
Allison J. Greaney, Andrea N. Loes, Katharine H.D. Crawford et al
doi: https://doi.org/10.1101/2020.12.31.425021
Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data
Volz, Mishra*, Chand et al
doi: https://doi.org/10.1101/2020.12.30.20249034
Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern 202012/01 in England
Davies, Barnard, Jarvis et al
doi: https://doi.org/10.1101/2020.12.24.20248822
Early empirical assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020
Leung, Shum, Leung et al
doi: https://doi.org/10.1101/2020.12.20.20248581
Mutation Landscape of SARS-CoV-2 in Africa
Nassir, Musanabaganwa, Mwikarago
doi: https://doi.org/10.1101/2020.12.20.423630
Major new lineages of SARS-CoV-2 emerge and spread in South Africa during lockdown
Tegally, Wilkinson, Lessells et al
doi: https://www.medrxiv.org/content/10.1101/2020.10.28.20221143v1
Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa
Tegally, Wilkinson, Giovanetti et al
doi: https://doi.org/10.1101/2020.12.21.20248640
Early transmission of SARS-CoV-2 in South Africa: An epidemiological and phylogenetic report
Giandharia, Pillaya, Wilkinson et al
Int J Infect Dis(2020)11, 128
doi: https://doi.org/10.1016/j.ijid.2020.11.128
Brief report: New Variant Strain of SARS-CoV-2 Identified in Travelers from Brazil
January 12, 2021
National Institute of Infectious Diseases, JAPAN
Researchers Discover New Variant of COVID-19 Virus in Columbus, Ohio
January 13, 2021
The Ohio State University Wexner Medical Center
威尼斯登录中心
北京:010-53681107
上海:021-50850665
邮箱:(产品订购)order.cn@acrobiosystems.com
邮箱:(技术支持)tech.cn@acrobiosystems.com
邮箱:(廉洁合规)lianjie@acrobiosystems.com
地址:北京经济技术开发区宏达北路8号5号楼4层